metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Colin A. Bremner and William T. A. Harrison*

Department of Chemistry, University of Aberdeen, Aberdeen AB24 3UE, Scotland

Correspondence e-mail: w.harrison@abdn.ac.uk

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (Mn–O) = 0.001 Å R factor = 0.031 wR factor = 0.078 Data-to-parameter ratio = 30.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Bis(1-carbamoylguanidinium) diaquatetrachloromanganate(II)

The title compound, $(C_2H_7N_4O)_2[MnCl_4(H_2O)_2]$, contains a molecular network of $C_2H_7N_4O^+$ cations and $[Mn(H_2O)_2Cl_4]^{2-}$ trans-octahedral anions (Mn site symmetry 2/m). An extensive network of $N-H\cdots Cl$, $N-H\cdots (Cl,Cl)$, $N-H\cdots O$, $O-H\cdots O$ and $O-H\cdots Cl$ links results in a structure with a three-dimensional hydrogen-bonding network. The compound is isostructural with its copper- and cobalt-containing congeners.

Comment

The title compound, (I), arose as a side product during a synthetic investigations of organically templated manganese-phosphate networks (Chippindale *et al.*, 2001). It is isostructural with $(C_2H_7N_4O)_2[Cu(H_2O)_2Cl_4]$ (Begley *et al.*, 1988) and $(C_2H_7N_4O)_2[Co(H_2O)_2Cl_4]$ (Bremner & Harrison, 2003).

In (I), Mn1 (site symmetry 2/m) has a flattened *trans*-octahedral coordination by two O (water) atoms and four Cl⁻ ions [range of *cis*-bond angles = 84.40 (3)–95.60 (3)°; $d_{av}(Mn-Cl)$ = 2.5277 (4) Å]. Similar Mn-O (d_{av} = 2.183 Å) and Mn-Cl (d_{av} = 2.543 Å) separations have been seen in related compounds (Feist *et al.*, 1997). The 1-carbamoylguanidinium (guanylurea) cation has typical (Bremner & Harrison, 2002) geometrical parameters [$d_{av}(N-C)$ = 1.334 (2) Å] and is essentially planar (for the non-H atoms, the r.m.s. deviation from the least-squares plane is 0.031 Å), indicating electronic delocalization over the non-H-atom skeleton (Begley *et al.*,

Figure 1

© 2003 International Union of Crystallography Printed in Great Britain – all rights reserved Component species in (I), shown with 50% displacement ellipsoids, arbitrary spheres for the H atoms and hydrogen bonds indicated by dashed lines. [Symmetry code: (vii) -x, 1 - y, -z.]

Received 8 July 2003 Accepted 9 July 2003 Online 17 July 2003

Detail of (I) showing the hydrogen-bonding interactions of the $C_2H_7N_4O^+$ species with nearby $[Mn(H_2O)_2Cl_4]^{2-}$ groups. Colour key: $[Mn(H_2O)_2Cl_4]^{2-}$ octahedra pink, Cl atoms green, C atoms blue, N atoms yellow, H atoms grey (all radii arbitrary). The intramolecular $H\cdots O$, intermolecular $H\cdots O$, and $H\cdots Cl$ portions of the hydrogen bonds are coloured light blue, yellow, and orange, respectively. Note that the chloride acceptors for bifurcated hydrogen bonds form octahedral edges. Symmetry codes as in Table 2; additionally (vi) $x + \frac{1}{2}, \frac{1}{2} - y, z + \frac{1}{2}$.

1988). A typical (Bremner & Harrison, 2002) non-linear ($\theta = 129^{\circ}$) intramolecular N4-H9···O2 hydrogen bond is present (Fig. 1).

The component species in (I) interact by way of an extensive hydrogen-bonding network (Table 2 and Fig. 2), as described in more detail for the isostructural compound $(C_2H_7N_4O)_2[Co(H_2O)_2Cl_4]$ (Bremner & Harrison, 2003). The N-H···Cl hydrogen bonds involving atoms H5 and H6 are bifurcated $[d_{av}(N \cdots Cl) = 3.415 (2) \text{ Å}, d_{av}(H \cdots Cl) = 2.74 \text{ Å}$ and $\theta_{av}(N-H \cdots Cl) = 137^{\circ}]$, whereas those involving atoms H3, H7 and H8 are simple N-H···Cl links $[d_{av}(N \cdots Cl) = 3.333 (2) \text{ Å}, d_{av}(H \cdots Cl) = 2.52 \text{ Å}$ and $\theta_{av}(N-H \cdots Cl) = 158^{\circ}]$. The 'synthon'-like role of N-H···Cl and N-H···(Cl,Cl) interactions in defining crystal structures containing different types of metal-chloride polyhedra has been discussed by Brammer *et al.* (2002).

Experimental

10 ml of a 1 M MnCl₂ solution, 10 ml of a 1 M H₃PO₄ solution and 0.5 g of dicyandiamide were mixed together in a plastic bottle and heated to 353 K for 24 h, resulting in a colourless solution. The solution was cooled to room temperature, and colourless rod-like crystals of (I) grew as the solvent slowly evaporated. The dicyandiamide was transformed to guanylurea cations by slow acid hydrolysis.

Crystal data

 $\begin{array}{l} ({\rm C_2H_7N_4O})_2[{\rm Mn}({\rm H_2O})_2{\rm Cl_4}]\\ M_r = 439.00\\ {\rm Monoclinic}, \ P2_1/n\\ a = 6.4106 \ (3) \ {\rm \AA}\\ b = 11.4036 \ (6) \ {\rm \AA}\\ c = 11.5775 \ (6) \ {\rm \AA}\\ \beta = 103.640 \ (1)^\circ\\ V = 822.49 \ (7) \ {\rm \AA}^3\\ Z = 2 \end{array}$

 $D_x = 1.773 \text{ Mg m}^{-3}$ Mo K α radiation Cell parameters from 2931 reflections $\theta = 2.5-32.3^{\circ}$ $\mu = 1.48 \text{ mm}^{-1}$ T = 293 (2) KBlock, colourless $0.33 \times 0.23 \times 0.19 \text{ mm}$

Data collection

Bruker SMART1000 CCD diffractometer ω scans	2947 independent reflections 2122 reflections with $I > 2\sigma(I)$ $R_{int} = 0.023$
Absorption correction: multi-scan	$\theta_{\text{max}} = 32.5^{\circ}$ $h = -9 \longrightarrow 9$
$T_{\text{min}} = 0.644, T_{\text{max}} = 0.768$ 8334 measured reflections	$k = -11 \rightarrow 17$ $l = -17 \rightarrow 16$
Refinement	
Refinement on F^2	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.031$	$w = 1/[\sigma^2(F_o^2) + (0.0411P)^2]$
$wR(F^2) = 0.078$	where $P = (F_o^2 + 2F_c^2)/3$
S = 0.95	$(\Delta/\sigma)_{\rm max} < 0.001$
2947 reflections	$\Delta \rho_{\rm max} = 0.40 \ {\rm e} \ {\rm A}^{-3}$
97 parameters	$\Delta \rho_{\rm min} = -0.23 \text{ e} \text{ \AA}^{-3}$

Table 1

Selected geometric parameters (Å).

Mn1-O1	2.1971 (10)	N2-C2	1.3529 (19)
Mn1-Cl1	2.5031 (4)	N2-C1	1.3839 (18)
Mn1-Cl2	2.5523 (4)	N3-C2	1.3147 (19)
O2-C1	1.2260 (17)	N4-C2	1.3011 (18)
N1-C1	1.317 (2)		

Table 2			
Hydrogen-bonding	geometry	(Å,	°).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O1-H1\cdots O2^i$	0.79	1.88	2.6499 (15)	167
$O1-H2\cdots Cl2^{ii}$	0.87	2.29	3.1227 (11)	159
N1-H3···Cl1 ⁱⁱⁱ	0.86	2.62	3.4649 (14)	166
$N1-H4\cdots O1$	0.86	2.10	2.9415 (17)	165
N2-H5···Cl1	0.86	2.67	3.2944 (14)	131
$N2-H5\cdots Cl2$	0.86	2.79	3.5170 (13)	143
N3-H6···Cl2 ^{iv}	0.86	2.57	3.3282 (15)	148
$N3-H6\cdots Cl1^{v}$	0.86	2.93	3.5213 (14)	127
N3-H7···Cl2	0.86	2.46	3.2635 (14)	155
N4-H8···Cl2 ^{iv}	0.86	2.49	3.2692 (15)	152
$N4-H9\cdots O2$	0.86	2.01	2.6441 (18)	129

Symmetry codes: (i) $x - \frac{1}{2}, \frac{1}{2} - y, z - \frac{1}{2}$; (ii) 1 - x, 1 - y, -z; (iii) $\frac{1}{2} - x, y - \frac{1}{2}, \frac{1}{2} - z$; (iv) $\frac{1}{2} + x, \frac{3}{2} - y, \frac{1}{2} + z$; (v) $\frac{1}{2} - x, \frac{1}{2} + y, \frac{1}{2} - z$.

The starting model for the non-H atoms was taken from the structure of $(C_2H_7N_4O)_2[Co(H_2O)_2Cl_4]$ (Bremner & Harrison, 2003), with Mn replacing Co. The H atoms attached to O1 were located in difference maps and refined as riding. The N-bound H atoms were placed in idealized positions [d(N-H) = 0.86 Å] and refined as riding. The constraint $U_{iso}(H) = 1.2U_{eq}(\text{parent atom})$ was applied in all cases.

Data collection: *SMART* (Bruker, 1999); cell refinement: *SAINT* (Bruker, 1999); data reduction: *SAINT*; program(s) used to solve structure: isostructural with Co complex; program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *ORTEP-3* (Farrugia, 1997) and *ATOMS* (Shape Software, 1999); software used to prepare material for publication: *SHELXL*97.

References

Begley, M. J., Hubberstey, P., Martindale, S. P., Moore, C. H. M. & Price, N. S. (1988). J. Chem. Res. (M), pp. 101–128.

- Brammer, L., Swearingen, J. K., Bruton, E. A. & Sherwood, P. (2002). Proc. Natl Acad. Sci. USA, 99, 4956–4961.
- Bremner, C. A. & Harrison, W. T. A. (2002). Acta Cryst. E58, m254–m256. Bremner, C. A. & Harrison, W. T. A. (2003). Acta Cryst. E59, m467–m469.

- Bruker (1999). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chippindale, A. M., Gaslain, F. O. M., Cowley, A. R. & Powell, A. V. (2001). J. Mater. Chem. 11, 3172–3179.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Feist, M., Troyanov, S., Stiewe, A., Kemnitz, E. & Kunze, R. (1997). Z. Naturforsch. Teil B, 52, 1094–1102.

- Shape Software (1999). ATOMS. Shape Software, Kingsport, Tennessee, USA.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.